SACIP

(draft)

Socket (Session) Aware Change of IP — SACIP

Samo Pogacnik (samo_pogacnik @t-2.net),
Skofja Loka
September, 2008

Abstract:

This paper presents one possibility to preserve established network connections of unmodified applications,
when an IP network address of an endpoint device changes. This functionality might enable the mobility of
network users in a way, where a mobile user could cross borders of staticaly configured IP (sub)network
areas just by accepting new IP address available from the entered IP network. At the same time established
network connections would not be interrupted and no need for the network infrastructure routing
reconfiguration on behalf of the mobile user's changed location, would have been necessary.

The basic idea of SACIP is to manipulate IP addresses written into IP packet headers dynamically as the IP
address of a local or remote endpoint change. This manipulation must not break connection associated data
of the connections established at the socket level. For this purpose extended socket parameters are being
filled with the new IP address values as well as remote hosts are being notified about the change. A special
notification protocol is necessary for this purpose and which mostly defines the security aspect of the
solution. This presentation includes a description of the primitive implementation of SACIP functionality in
Linux and its possible enhancements and use cases.

1/11

SACIP

Table of content

LI 015 o Ta LT 5 (o) s PSP UUUPPURT 3
2 Functional limitations and TEQUITEIMENTS.cc...eeiiurierriieeeiieeeitee ettt e st e st eesiteesiibeeeeeeeesanbeeeeeens 4
3 SACIP IMPIEMENTATION.eiiitiieiiieiiieeeitee ettt e ettt e eite e et e esbeeesebeeesebeesaseesateesasaeesaseeesnseeensseesnnnsnees 5
3.1 IPv4 network socket extensions and their initialiZation.............cccueevieriieniieniiieeenieeceeeee 5
3.2 Usage of the extension fIeldS..........coouiiiiiiiiiiiiie e e 7
3.3 SACIP notification ProtOCOL........coc.uiiiiiiiiiiiiiie ettt e e e e e e e e e 8
3.4 SACIP QCHVALION.....ccoutieiiieiiietteeiieete ettt ettt et e sttt e st e e bt e sate e bt esaseebeesateesbteeeesabaeeenanneeenns 9
4 PEITOITIANCES.eeuveeiieiiieeiteet ettt ettt et sat et e st e e e s bt e et e sbee st e e sate e sasneeesannneeeemneeeenane 10
N1 1 S PUPRP 10
6 COMNCIUSION. ...ttt ettt h e et e s b et et e e e h bt e bt e sab e e bt e eab e e bt e sabeebeeeabeeennbeeeenans 10
S (S (=) 1 161U 11

2/11

SACIP

1 Introduction

The main motivation for this experiment, is the increasing need for the on-line mobility of user
network devices (mobile phones, laptops, hand helds, ...), as well as IP becoming the “de facto”
platform for any kind of communication. The aim of this work is to explore possibilities (as well as
to implement at least minimal demonstration in Linux) for preserving network connections over the
IP network, while one or both connection endpoints change their IP address.

There are several reasons for changing IP address of a mobile endpoint device. A user could be
physically crossing borders of two or more IP subnets. And there could be cases where a user wants
to switch between more concurrently accessible IP networks on the same or different network
interfaces (a device might support more access technologies for instance). Beside those cases, it can
happen, that a device (interface) gets new address within the same IP subnet as well (i.e. DHCP
lease expiration). To achieve true mobility of IP endpoint devices, breaking connections would not
allways be acceptable, if IP addresses change. Preserving network connections of a mobile user is a
different topic than using the same IP address independently of the users connection point in the IP
network (defined as Mobile IP — RFC 2002). Allthow theese are two different things, they might be
complementary.

The idea for this experiment rises from the fact that a network using IP, which is unreliable and
connectionless oriented protocol of the network layer, delivers packets from one endpoint to
another, independently of the upper protocol layers (which define connections). So, there must exist
the possibility to preserve already established network connections, if a kind of notification
protocol between communicating endpoints about the IP address changes, would have been
implemented. As a result, IP addresses of IP packets of live connections could adapt in sync with
the IP address changes. Additionally, attention must be paied towards how layers above the network
layer use IP addresses to preserve the connection.

This means that in case of established network connections based on connected inet sockets, three
things need to be done:

1. Extension of the original IP address fields of inet socket structure by additional fields for
local and remote IP addresses, referring to current and next active values.

2. The original local and remote IP address parameters to stay bound to the upper socket layer
only. Their use in the IP layer is being replaced by currently active values from newly added
fields. On IP address change only IP layer bound parameters of the extended socket get
changed. This means that IP layer bound addresses are being used for the routing purposes
of the outgoingpacket, being written into IP headers of outgoing packets as well as being
used do find corresponding socket of the incoming packet. On the other hand original
addressed contribute to TCP/UDP checksum calculation, for instance.

3. On IP address change, notification message about changed IP has to be sent to every
destination pointed by established socket related to the changed IP address. On receip of the
notification message, related local sockets must be updated with the received value as the
new current remote IP address.

3/11

SACIP

2 Functional limitations and requirements

To be able to set a frame around the implementation of this experiment, a few limitations and
requirements regarding the functionality, have been specified:

1.

No application modifications would have been made. That way only connections defined in
the socket layer could be preserved. To be able to address connections defined above the
socket layer in each application, additional notification mechanism towards application is
needed.

The security issues as well as the reliability of the notification protocol are going to be
overlooked for the sake of the simplicity of the implementation. Concerns about the
definition of the notification protocol mostly relate to security aspects of transferring
changed (and the original) IP addresses over the network. Otherwise, notification has to be
as simple as possible, to reduce impact on latency critical connections (such as phone
conversations). This requirement also contradicts the requirement for reliability of
notification.

Only IP address changes on the same network interface, which is being used for
communication, are being covered by this implementation. That way existing networking
functionality (promote secondaries) and IP configuration tools could be used to test SACIP.

Only simple network configurations without NAT devices in the connection path are being
covered. Today’s IPv4 network consists of a complex mixture of public and private sub
networks. To preserve connections through a combination of public and private sub
networks, to many migration scenarios would have to covered straight from the beginning.
Therefore, limiting this research to IP changes of an endpoint device only within a single
private or just a public network, is necessary.

Only IPv4 would have been covered.

Lose of current IP address is not allowed before the notification message would have been
sent. The effect of this requirement was that only new address has to be specified in the
payload of the notification message. This is again a simplification for the sake of the
implementation and also means that a user must always enter new subnet through an area
where both subnets would be accessible.

4/11

SACIP

IP podomrezje 1

Aplikativng

&DOVeZaVa 1

Apy;
lgy:
Po l/ezam/n a

Vae

Premik IP nap
iz podomrezja 1 v

druga IP
podomrezja

IP podomrezje 2

Figure 1 - Simple migration of a mobile IP endpoint device.

3 SACIP implementation

This section explains the implementation of the SACIP functionality within the 2.6.19 Linux kernel.

3.1 IPv4 network socket extensions and their initialization
The structure of the IPv4 network socket needs additional fields:

e a pair of additional source IP addresses
e a pair of additional destination IP address
e an index of the currently active source IP address within the added source address pair

e and an index of the currently active destination IP address within the added destination
address pair

The implementation detail of a socket structure extension:

5/11

SACIP

——— linux-2.6.19/include/net/inet_sock.h
+4++ linux-2.6.19-sacip/include/net/inet_sock.h
@@ -112,6 +112,12 @@ struct inet_sock {
/* Socket demultiplex comparisons on incoming packets. */

__be32 daddr;

_ be32 rcv_saddr;
+#ifdef CONFIG_SACIP
+ __be32 sac_daddr[2];
+ int sac_daddr_act;
+ __be32 sac_rcv_saddr[2];
+ int sac_rcv_saddr_act;
+#endif

__beleo dport;

__ule num;

_ be32 saddr;

A pair of additional source and destination IP addresses have been specified for the following
reasons:

1. Original IP addresses bound to the upper applicative layers stay untouched during the whole
life of a connection as they were set at the connection setup. This way application does not
notice the change in IP addresses used to carry connection data.

2. One additional IP address holds currently active source and destination IP address. Those
addresses are being used within the network layer (IP layer).

3. The other additional IP addresses are being prepared for the new source or destination
address during the IP change at one end of the connection.

All additional TP addresses get initialized to the same values as original IP address fields at
connection setup or any other action that explicitly initialize original IP address fields. At the
initialization indexes of the active addresses always point to the first address of a pair.

Extra helper functions are being prepared for the manipulation of theese extensions:

——— linux-2.6.19/include/net/inet_sock.h

+4+4+ linux-2.6.19-sacip/include/net/inet_sock.h

@@ -150,6 +156,54 @@ static inline struct inet_sock *inet_sk(
return (struct inet_sock *)sk;

}

+#ifdef CONFIG_SACIP
+static inline _ be32 sac_inet_daddr (const struct sock *sk)

+{

+ struct inet_sock *inet = inet_sk(sk);

+ return inet->sac_daddr[inet->sac_daddr_act];

+}

+

+static inline _ be32 sac_inet_rcv_saddr (const struct sock *sk)
+{

+ struct inet_sock *inet = inet_sk(sk);

+ return inet->sac_rcv_saddr[inet->sac_rcv_saddr_act];

+1

+

+static _ _inline_ void sac_init_daddr (struct inet_sock *sk, _ be32 daddroO,
_ _be32 daddrl, int act)

+{

+ sk->sac_daddr[0] = daddrO;

6/11

SACIP

+ sk—->sac_daddr[1] = daddrl;
+ sk—->sac_daddr_act = act;
+1
+
+static __inline_ void sac_init_rcv_saddr (struct inet_sock *sk, _ be32 saddroO,
_ _be32 saddrl, int act)
+{
+ sk—->sac_rcv_saddr[0] = saddr0;
+ sk—->sac_rcv_saddr[1l] = saddrl;
+ sk—->sac_rcv_saddr_act = act;
+1
+
+static _ _inline_ void sac_add_rcv_saddr (struct inet_sock *sk, _ be32 saddr)
+{
+ sk—->sac_rcv_saddr|[(sk->sac_rcv_saddr_act + 1) % 2] = saddr;
+}
+
+static _ _inline_ void sac_act_rcv_saddr (struct inet_sock *sk)
+{
+ sk—->sac_rcv_saddr_act = (sk->sac_rcv_saddr_act + 1) % 2;
+}
+
+static _ _inline_ void sac_add_daddr (struct inet_sock *sk, _ be32 daddr)
+{
+ sk->sac_daddr|[(sk->sac_daddr_act + 1) % 2] = daddr;
+1
+
+static _ _inline_ void sac_act_daddr (struct inet_sock *sk)
+{
+ sk->sac_daddr_act = (sk->sac_daddr_act + 1) % 2;
+}
+#endif
+
static inline void __inet_sk_copy_descendant (struct sock *sk_to,

3.2 Usage of the extension fields
For the incoming packets, extension fields are being used as a glue between the network and
transport layer to find sockets related to incoming packets, in the same way as original IP addresses
did:

——— linux-2.6.19/include/net/inet_hashtables.h
+4+4+ linux-2.6.19-sacip/include/net/inet_hashtables.h
@@ -325,6 +325,7 @Q@ typedef _ u64 _ bitwise __addrpair;
(' ((__sk)—->sk_bound _dev_if) || ((__sk)->sk bound dev_if == (__dif))))
#else /* 32-bit arch */
#define INET_ADDR_COOKIE (_ name, _ saddr, __ daddr)
+#ifndef CONFIG_SACIP
#define INET_MATCH(__ sk, _ _hash, _ cookie, __ saddr, _ daddr, __ports, _ dif)

\
(((__sk)—->sk_hash == (__hash)) && \
(inet_sk (__sk)—->daddr == (__saddr)) && \
@@ -337,6 +338,20 @@ typedef __ _u64 _ bitwise __addrpair;
(inet_twsk (__sk)->tw_rcv_saddr == (__daddr)) && \
((*((_portpair *)&(inet_twsk(__sk)->tw_dport))) == (__ports)) && \
(! ((__sk)—->sk_bound_dev_if) || ((__sk)—->sk_bound_dev_if == (__dif))))
+#else

+#define INET_MATCH(__ sk, _ hash, _ cookie, _ saddr, _ daddr, _ ports, _ dif) \

711

SACIP

+ (((__sk)—->sk_hash == (__hash)) && \

+ (sac inet_daddr (__sk) == (__saddr)) && \

+ (sac_inet_rcv_saddr (__sk) == (__daddr)) && \

+ ((*((__portpair *)&(inet_sk(__sk)->dport))) == (__ports)) && \

+ (' ((__sk)—->sk_bound _dev_if) || ((__sk)->sk bound dev_if == (__dif))))

+#define INET_TW_MATCH(__sk, __hash,__cookie, __saddr, __daddr, __ports,
dif) \

+ (((__sk)—->sk_hash == (__hash)) && \

+ (sac inet_tw_daddr (__sk) == (__saddr)) && \

+ (sac_inet_tw_rcv_saddr(__sk) == (__saddr)) && \

+ ((*((_portpair *)& (inet_twsk(__s) —>tw_dport))) == (__ports)) && \
+ (! ((__sk)—->sk_bound_dev_if) || ((__sk)->sk_bound_dev_if == (__dif))))
+#endif

#endif /* 64-bit arch */

They are being used within the network layer as well. Instead of the original fields, extended fields
define source and destination IP addresses of outgoing packets:

—-—— 1linux-2.6.19/net/ipv4/ip_output.c

+4+4+ linux-2.6.19-sacip/net/ipv4/ip_output.c

@@ -309,7 +309,11 @Q@ int ip_qgueue_xmit (struct sk_buff *skb, i
_ be32 daddr;

/* Use correct destination address if we have options. */
+#ifndef CONFIG_SACIP

daddr = inet->daddr;
+#else
+ daddr = inet->sac_daddr[inet->sac_daddr_act];
+#endif

if (opt && opt—->srr)

daddr = opt->faddr;

@@ -317,7 +321,11 @@ int ip_queue_xmit (struct sk_buff *skb, i
struct flowi fl = { .o0if = sk->sk_bound_dev_if,

.nl_u = { .ipd4_u =

{ .daddr = daddr,
+#ifndef CONFIG_SACIP

.saddr = inet->saddr,
+#else
+ .saddr = inet->sac_rcv_saddr[inet—->
sac_rcv_saddr_act],
+#endif

.tos = RT_CONN_FLAGS (sk) } 1},
.proto = sk->sk_protocol,
.uli_u { .ports =

3.3 SACIP notification protocol
As already mentioned, simplicity of the notification is the main goal of this specification (no
acknowledgement messages, no message authentication). It is merely specified to test the SACIP
concept.

Notification message has been sent for each socket found associated with the changed IP address of
the endpoint device. It is defined as an additional ICMP message (temporary definition: type 207?).
ICMP data field contains only new IP address to be used for the connections bound to the endpoint
device sending the notification message. This way we can not afford to loose original address

8/11

SACIP

before sending the notification, but connection is at least a little bit safer.

0 1 2 3
0123456789 0123456789012345678901
t—t—Ft—F—t—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—t—F—F—F—F—F—F—+—F—F+—+—+

| Type | Code | Checksum

Fot bttt bttt -+ —+—+
| New IP Address of sending device

Fot—t ettt =ttt —t—F—t—F—t—F—t—F—t—F—t—F—t—F—F—F—+—+

Figure 2 - SACIP notification ICMP message

The device which receives this notification message scans its sockets and reconfigures its socket
extensions so that all packets sent for the affected connections use new destination IP address.

3.4 SACIP activation
No additional configuration tool has been implemented for this, so features of the ip tool (from
iproute2 package) had been used. First by adding a new address to existing interface and then by
deletion of the first primary address, sacip functionality gets called. And if new address has been
added as a secondary address, then the promote secondaries kernel feature has to be enabled as well
to activate sacip functionality by deletion of the primary address.

After the deletion of the first primary address, all tcp established sockets as well as all udp and raw
sockets are checked, if their current active source address correspond to old/deleted i1p address. For
each socket found an ICMP message containing only new primary address is sent to the currently
active destination address of a socket. After that new source addres get assigned as currently active
on a local endpoint.

On receipt of a sacip ICMP message, remote side also checks its sockets, if their current active
destination address equals to the source address of the ip packet header carrying the sacip icmp
message. Found sockets get assigned new ip address (received in the icmp message) as current
active destination address, afterwards.

Afterwards communication continues using newly assigned ip address, but the application (telnet
for instance) operates as if old address would still be assigned.

An excerpt of the activation sequence where a primary IP address gets deleted and additional
addresses promoted:
-—— linux-2.6.19/net/ipv4/devinet.c

+++ linux-2.6.19-sacip/net/ipv4/devinet.c
@R -282,6 +288,20 @@ static void __inet_del_ifa(struct in_dev

break;
}
}
+#ifdef CONFIG_SACIP
+ if (promote) {
+/*samo - tst: printk ("__inet_del_ifa: 1: ifal->ifa_local=0x%x,
promote->ifa_local=0x%x\n", ifal->ifa_local, promote->ifa_local);*/
+ sac_add_rcv_saddr_tcp(ifal->ifa_local, promote->ifa_local);
+ sac_add_rcv_saddr_udp(ifal->ifa_local, promote->ifa_local);

9/11

SACIP

+ sac_add_rcv_saddr_raw(ifal->ifa_local, promote->ifa_local);
+ } else

+ if (prev_prom) {

+/*samo - tst: printk ("__inet_del_ ifa: 2: ifal->ifa_local=0x%x,
prev_prom->ifa_local=0x%x\n", ifal->ifa_local, prev_prom->ifa_local);*/

+ sac_add_rcv_saddr_tcp(ifal->ifa_local, prev_prom—>
ifa_local);

+ sac_add_rcv_saddr_udp (ifal->ifa_local, prev_prom—>
ifa_local);

+ sac_add_rcv_saddr_raw(ifal->ifa_local, prev_prom->
ifa_local);

+ }

+#endif

}
/* 2. Unlink 1t */
4 Performances

Regarding performances, special care has to be taken within the code handling every incoming or
outgoing packet.

5 Security

Security of connections following this SACIP is poor, because a single spoofed SACIP notification
message containing invalid new IP address breaks all connections originated from one IP address. If
some secrets could be safely exchanged at the beginning of the connection (I propose IKE protocol
from the IPSec), encryption of the notificaion message would be possible. Then this kind of
connection intrusion would be much harder. Other security aspects of the connection should note
get worse because of SACIP.

6 Conclusion

I am not sure how valuable this functionality could be, but mobility is the future (they say). So any
research in this direction might pay-off.

And for the future, elimination of imposed limitations would be nice:
e application notification, which must not affect existing applications,
e secure notification,

e notification carying original and new IP address to be able to skip gaps without accesible
network,

e extra tool for SACIP activation,
e SACIP activation over multiple network interfaces,
e how to include NAT devices into the game,

e Any comments are most welcome, also to make this document more understandable.

10/11

SACIP

7 References

[1] RFC 791, Internet Protocol, 1981

[2] REC 793, Transmission Control Protocol, 1981
[3] RFC 768, User Datagram Protocol, 1980

[4] RFC 792, Internet Control Message Protocol, 1981
[5] RFC 854, Telnet Protocol, 1983

[6] Internet sockets, http://en.wikipedia.org/wiki/Internet socket

11/11

http://en.wikipedia.org/wiki/Internet_socket

	 1 Introduction
	 2 Functional limitations and requirements
	 3 SACIP implementation
	 3.1 IPv4 network socket extensions and their initialization
	 3.2 Usage of the extension fields
	 3.3 SACIP notification protocol
	 3.4 SACIP activation
	 4 Performances
	 5 Security

	 6 Conclusion
	 7 References

